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Thermodynamic Studies of High Temperature Equilibria

III. SOLGAS, a Computer Program for Calculating the Composition and
Heat Condition of an Equilibrium Mixture

GUNNAR ERIKSSON

Department of Inorganic Chemistry, University of Umed, S-901 87 Umed, Sweden

A computer program named SOLGAS is described. SOLGAS is a
program for calculating equilibrium compositions and heat conditions
in systems containing ideal gaseous species and pure condensed
phases. The method of the equilibrium calculations is based upon
minimization of the free energy of the system considered.

In studying high temperature equilibria, e.g. equilibria occurring in combus-
tion and metallurgical processes, it is most often necessary to consider
several gaseous and condensed species. As soon as several species appear in a
system, the calculation of equilibrium compositions becomes quite complicated,
and the complexity is strongly dependent on the number of condensed species
present. To attack such complex systems, the use of computers is a necessity.

Several calculation methods of general interest have been suggested in
later years. However, most of them are designed and used for equilibria in a
gas phase, while few are devoted to systems containing condensed phases.
(Comprehensive reviews are recently published by Zeleznik and Gordon,! and
by van Zeggeren and Storey,? where the main contributions are discussed in
detail.)

For calculating the equilibrium conditions in mixtures containing both
gaseous and condensed species, the only general computer program to be found
was HALTAFALL (Ingri et al2). This program, primarily intended for water
solutions including precipitations, proved to be rather slow applied to high
temperature systems containing several condensed phases. For equilibrium
studies of some sulfide systems (see, e.g., Eriksson and Rosén ¢), many calcula-
tion points were needed. Therefore, it seemed worthwhile to devise a program
with considerably higher speed and which also performed heat calculations.

In SOLGAS, the method of free energy minimization, first described by
White et al.5 for gas phase equilibria, is extended to systems containing several
condensed phases mainly in accordance with Oliver ef al.
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UNITS AND SYMBOLS

1 cal=1 cal (thermochemical)=4.184 J.

G =Gibbs free energy in cal.

g =chemical potential in cal mol™.

H =enthalpy (heat content) in cal mol™.

K, =equilibrium constant of formation.

P =total pressure in atm.

p =partial pressure in atm.

R =ideal gas constant (=1.98717 cal K™ mol™).

T =absolute temperature in Kelvin.

x* =number of moles in the initial mixture.

y° =initial guess of the number of moles in the equilibrium mixture.

C, =heat capacity at constant pressure in cal K™mol™ as a function of tem-
perature. .

A:H°y9s =heat of formation at 298.15 K in cal mol™.

(G° — H®4)/T =free energy function in cal K™'mol™.

(H° — H°,95) =heat content function in cal mol™.

4 =increment of a given property for a reaction (the values for the products
less the values for the reactants).

The superscript ® indicates the thermodynamic standard state.

The subscript 5 denotes the reference temperature (25°C=298.15 K).

The subscript ; denotes the formation of a compound from the elements in

their standard states.

P

METHOD USED FOR THE EQUILIBRIUM CALCULATIONS

For calculating an equilibrium composition, ¢.e. the non-negative set of
mole numbers which gives the lowest possible value of the total free energy
of the system, and which satisfies the mass balance constraints, an iterative
procedure was used. First, the number of moles of the substances considered
to be present in the system (y°) are estimated. Improved values of the mole
numbers can be calculated (x), which in turn are used for a new guess (y),
and so on, until the equilibrium composition is obtained. Thus, every iteration
cycle will start with a new set of y-values.

Basic equations. The free energy G of the system can be expressed as

G= Z z.9;

where z; denotes the mole number of a substance, and g; is the chemical
potential defined as
9;=9;+RT In a,

For the gaseous species, which are treated as ideal, the activities a; are equal
to the partial pressures p;:
' a;=p;=(z;/X)P

X and P denote the total number of moles in the gas phase and the total
pressure, respectively. For the condensed substances, which are thought to
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be pure, the activities are equal to unity. Using the definitions above, a di-
mensionless quantity (G/RT') can be obtained:

GIRT =3 afl*[BT)f+1n P+InGf XN+ 3 @ RD) (1)

The indices g and ¢ indicate gas phase and eondensed phase, respectively.
The number of substances in the gas phase is denoted by m, and s is the
number of condensed phases assumed to be present at equilibrium.
The value of (9°/RT) for a certain substance is calculated using the ex-
pression
(°/RT) = (1] R)[(G° — HC35)|T] + AH 305 KT (2)

Alternatively, values of (g°/RT) can be calculated according to the relation
A4(g°/RT)= —In10log K,

The mass balance relations can be written
z aﬁgxf-l- 2 a,fxf: b, (j= l, 2; e ’l) (3)
i1 =1

where a; represents the number of atoms of the jth element in a molecule of
the ith substance, b, is the total number of moles of the jth element, and [ is
the total number of elements.

The method involves a search for a minimum value of the free energy G
of a system (or equivalently (G/RT), see eqn. (1)), subject to the mass balance
relations as subsidiary conditions (see eqn. (3)). Lagrange’s method of un-
determined multipliers is suitable, and the following equations are obtained:

(9°/RT)f+1n P+ln(xf/X)—é maf=0 (i=1, 2,...,m) (4)

i=1
I
(9°|RT)f —7;1 ma; =0 (t=1, 2,...,8) (5)

The factors z; are Lagrangian multipliers.

The eqns. (3) and (4) are expanded in a Taylor series about an arbitrary point
(Y18 Yobs - Unts Y5 Ys's. .. syS), neglecting terms involving derivatives of
second and higher orders:

ZHWE 2tk 2l myf)k 2wl =y} =0 G=L2 ) (0
: l .
(¢°/RT)f +1n P+In(yf| Y )—jzlnf%“(wf/yf)—(X/Y )=0 (i=1,2,...,m) (7)

where Y =3 y§¥.
i=1
From eqn. (7), z# is calculated:

b= —f g4 S maf) (=1, 2 m) Q
2

where
fi=yd(@°|RT)F+In P+In@#Y)] (i=1, 2,...,m)
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The summation of eqn. (8) over ¢ gives

[] ” m
Z 7T, Z ys‘a.f=2 fi (9
j=1 f=1 =1

The quantity C;, which serves as a correction term in cases where the initial
guess of the mole numbers does not satisfy the mass balance relations, is
defined according to Levine 7 as

C,.=zla,~i‘y,~‘—b,- (4=1, 2,....0) (10)
Substitution of eqns. (8) and (10) into eqn. (6) gives

l m § m
kzlnk'rih"*' [(X/Y)- l]igl atyf +‘§1“ﬁcx.c = ,Zlai,'gfi"" 0, (y=1,2,...0) (11)
where

Tik=7'k1- ='_21 (a,-i’a,-,f)yf (j,k-_—' 1, 2, “e ,l)

Now, the eqns. (11), (5), and (9) constitute a system of (I+s+1) linear
equations, consisting of the (I+s+41) unknown quantities =, (j=1, 2,...,]),
zf (1=1, 2,...,s), and [(X]Y)—1], the latter, for sake of simpficity, hereafter
called m,,,. The system of equations is solved using Gaussian elimination (see,
e.g., Ralston 8). Notice that the solution gives directly the a°-values, while
the xf-values are obtained from eqn. (8), making use of the values for =,
(1=1,2,...,l+1). It should be mentioned that a singular matrix will be obtaine
if a mixture of two or more elements reacts completely to one certain substance.
The singular matrix can be avoided in two ways: either by choosing the initial
mixture so that it deviates minutely from the stoichiometric one, or by adding
traces of a new element which reacts with the elements initially added.

Iterative procedure. If all z-values obtained are positive, they will be used
as the new initial guess.

If negative z-values appear, the difference between the initial and the
calculated values is reduced in order to obtain positive values. For all sub-
stances with negative x-values, y,’ is put equal to zero where

¥ =yi+A(x;—y) (12)

and A is calculated. Then, eqn. (12) is used to calculate adjusted, positive
values of all mole numbers, using a value A=kA,;,, where k<1, and 4, is the
smallest A-value obtained. Usually, k is chosen near unity, e.g. 0.99. The
y'-values are then used as estimates in the subsequent iteration cycle. Observe,
that if the y-values satisfy the mass balance constraints, so do the y’-values,
since the mass balance constraints are satisfied for all A-values.

In order to avoid too many iterations, it was found necessary to adopt a
lowest allowed y-value. If the mole number for a substance becomes less than
the lowest allowed (in this program 107! mol), y, is put equal to zero. That
substance will then not be considered in the subsequent iterations, as both z;
and y,” will be zero-valued according to the eqns. (8) and (12), respectively.
Moreover, as the z°-values calculated are independent of the 3’-values, the
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program is written so that a condensed compound cannot determine the A-
value, until all 28-values are positive.

The quantity =, ,, which is a variable in the system of linear equations
to be solved, is used to test if the free energy of the system has reached a
minimum value. When X approaches Y, i.e. when the improved and the
guessed mole numbers are becoming equal, the value of &, ; approaches zero.
To achieve a satisfactory accuracy for all mole numbers, it was found that a
value of 7, , less than 1078 was adequate. If the test is not satisfied, the
calculated y-values are substituted into the eqns. (11), (5), and (9), and a
new iteration cycle starts.

Handling of condensed phases. The calculations discussed above are based
on certain condensed compounds, initially assumed to be present at equilib-
rium. However, another set of condensed phases can give a lower value of the
free energy of the system, and therefore it must be possible either to withdraw
or to add condensed compounds, until the correct set is obtained.

In case the phase rule is contradicted, the condensed compounds taken
into account will immediately be cancelled out, and a new set of condensed
compounds will be considered. A single condensed compound can also be with-
drawn. For example, if the number of moles of a solid becomes more and
more negative, that solid will be withdrawn. The same thing will happen if 4
for a condensed phase approaches zero.

The free energy of the system can, in addition to eqn. (1), be represented
by the equation !
G/RT =3 mb, (13)

i=1

Eqn. (13) is derived by substitution of the eqns. (4) and (5) into eqn. (1).

By considering eqns. (5) and (13), it can easily be checked whether a condensed

substance, not primarily assumed, has to be added. That happens if (9°/RT)/
l

is less than > ma,’. If no additional condensed phases give a lower value of
=1

=
the free energy of the system, the equilibrium phases have been obtained.

As the number of combination alternatives of condensed phases strongly
depends on the total number of condensed phases and the number of elements,
the greater those numbers, the more iterations will on average be needed to
obtain the equilibrium composition, and thus the computing time will be
increased. As an example, it can be mentioned that theoretically, 57(794)
combination alternatives of condensed compounds exist in a system with
5 elements and a total number of 6(12) condensed phases. To limit the comput-
ing time, the calculations will stop after 999 iteration cycles (the figure 999
is arbitrarily chosen and can easily be changed). When a new set of condensed
phases is taken into account, a new iteration cycle starts, and all gaseous
species will again be considered.

HEAT CALCULATIONS

Since the equilibrium composition has been obtained, the heat generation
or the total heat of a process can be computed, using values of 4.Hgs C
and (H°— Hy).
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The following scheme is used. The energy necessary for pre-heating the
initial mixture from the initial temperature 7’; K to the reaction temperature
T K (HP), added to the heat of reaction (HR), gives the total heat (HT):

HT=HP+HR
HP and HR are given by the following expressions:

HP=3 x*H°—-H°r),

where 2* denotes the number of n:loles in the initial mixture, and
(- Hor)=] (C)aT
HRE= g(dﬂ *r)ila— %)

(4H°7),= (4:H 398); + [(H® — H°39); — (H° — H° 398)e1ements)

Observe, that the expression for (H° — H°r,) is not valid for solids with transi-
tion points within the actual temperature interval. In that case, (H°—H°r,)
has to be computed in advance, using the proper expression.

For substances with (H®—H®4s) unknown, 4.H° is supposed to be inde-
pendent of temperature and equal to 4.H .

where

COMMENTS TO THE PROGRAM SOLGAS

SOLGAS, which is written in the FORTRAN language, can be requested
from the author, together with a punching guide. Table 1 shows an example
of output of data; the printed values are easily recognized by the text in the
headline. It should be mentioned that a value of x <1078 will be printed as 0.

SOLGAS is dimensioned for 10 elements and 99 substances, of which a
maximum of 25 can be condensed. If necessary, these figures can be increased,
but they may be sufficient for most systems of practical importance. It should
be noted, however, that the computing time is influenced by the number of
elements and condensed phases, as discussed above. For a very complex
system, a good initial guess can considerably reduce the computing time.

To check the program, calculations were performed on the system (C, H, O,
S, Na, N) investigated by Rosén.? The results obtained, using SOLGAS, agreed
completely with those earlier presented. It could be mentioned that for the
calculations performed in Part I,* on a system containing maximum 6 solids
and 15 gaseous species, the computing time for a calculation point (equilibrium
calculations, heat calculations, and calculation of some special quantities for a
given set of initial data) was on average about 6 seconds on a computer CD
3200.

It is not quite fair to compare computing times obtained from two different
programs, as there are many influencing factors, e.g. the language used, output
layout, and the initial guesses. However, we have found that the computing
time using SOLGAS is of the order 10 — 100 times shorter than the calculation
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Table 1. An example of output of an equilibrium composition (see Ref. 4).

T= 1100 K
P = 1.00E 00 ATM

12 ITERATIONS

X* MOLE Y0 MOLE X MOLE P ATM

S2 0 1.8563E-08 243204E-08 4,8621E-10
02 1.0000E 01 1.5237E-08 1.9046E-08 3.9907E-10
N2 3.728B7E 01 2.9829E 01 3.7287E 01 7.8129E-01
AR 44377T9E~01 3.5023E-01 4,3779E~-01 9,1732E-03
S 0 1.0000E-08 0 0
S4 0 1.06000E-08B 0 0
S6 0 1.0000E-08 0 0
S8 / 1.0000E-08 0 0
0 0 1.V0000E~-08 0 0
SO 0 2¢8313E~-05 3.5391E~05 Te4157E=-07
sp2 0 7.9998E 00 9.,9998E 00 2.0953E-01
S03 0 9.964TE~05 1.2456E~04 2.6099E-06
$20 0 2+6284E-08 3.2855€£=-08 6.8843E-10
NO 0 1¢5704E-07 1.9630E-07 4,1131E-09
NO2 0 1.0000E~08 0 0
Cu 0 1.6000E 01 2.0000E 01 0
cu20 0 0 0 0
cuo 0 0 0 0
cu2s 1.,0000E 01 2.0000E 00 444611E=05 0
CuUS04 0 0 0 0
Luy2s0s 0 0 0 0
PRE=HEAT = 4.6692E 02 KCAL

HEAT OF REACTION = =5.5703F 02 KCAL

TOTAL HEAT = =9.,0106E 01 KCAL

time using HALTAFALL for one and the same system, containing 2 — 4 solids.
If the number of solids is 25, HALTAFALL will not reach a solution in a
reasonable time.

In many cases it is desirable to obtain values of quantities which are
derivable from the mole numbers of the equilibrium mixture. For example,
it can be of interest to know the distribution of an element in different species
(see, e.g., Eriksson and Rosén %), or the values of the partial pressures for
some minor substances which appear in negligible amounts, e.g. the partial
pressure of oxygen in various combustion processes. These calculations can
be performed in a subroutine, and the necessary statements are easily written
by the user.
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